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INTRODUCTION

The nature and quality of metal/semiconductor interfaces are of considerable importance
in device applications. The thickness and nature of surface oxides can have a significant impact
on Schottky diode behavior and ohmic contact formation."? A number of wet cleaning
procedures have been developed to prepare semiconductor substrates for molecular-beam epitaxy
(MBE) growth and for device fabrication."** Generally, the treated GaAs surface should be
smooth, have no metallic contaminants, be free of oxides, and have a Ga/As ratio of unity.
Often, the cleaning procedure begins with a degreasing cycle in which the wafer is immersed in
hot acetone and methanol, and rinsed in DI water. The wafer surface is then oxidized by an
oxidizing agent (typically OH- from H,0,) to produce As,0;, As,O;, Ga,0,, Ga,0,(H,0), and the
Ga suboxide Ga,O. Finally, the oxidation products are removed by an acid or a base. Typically,
both the acid or base and the H,0, are in solution, and the oxide formation and removal occur
simultaneously. Acids used include sulfuric (H,SO,), phosphoric (H,PO,), citric (CH;0,),
hydrochloric (HCI), and hydrofluoric (HF). HF buffered with ammonium fluoride (FH,N) is also
used. Surface oxides and contaminants present after wet etching have been studied mainly by
X-ray photoelectron spectroscopy (XPS).[>3€!

The quality of epitaxial thin films is extremely sensitive to the surface condition
immediately prior to deposition. This report investigates the orientational characteristics of thin
Ag films on GaAs(100) substrates cleaned by various wet-etching techniques. Two theta scans
and pole figure X-ray analyses on the Ag/GaAs(100) samples were performed to determine the
crystal structure of the Ag overlayers and any epitaxial orientations of the films to the GaAs(100)
substrates. The substrates were cleaned with various wet-etching schemes using phosphoric,
sulfuric, hydrochloric, and hydrofluoric acid-based etches and an ammonium hydroxide etch.

EXPERIMENTAL PROCEDURE

The substrate in all cases was an n-doped GaAs(100) wafer prepared using four different
cleaning techniques as shown in Table 1. The partially ionized beam (PIB) deposition technique
used to deposit the Ag films has been previously described.” Briefly, a small fraction (0-5%)
of the evaporated species is ionized by the electrons used to heat the crucible by electron
bombardment. The self ions are then accelerated toward the substrate by an accelerating potential
difference between the crucible and substrate and are deposited along with the neutral species.
Deposition conditions were: substrate at room temperature; base pressure less or equal to 2x10”°
Pa; deposition rate approximately equal to 4.0 angstroms/sec; and final film thickness
approximately equal to 800 angstroms. All depositions were carried out with a "floating"
substrate potential, in which the substrate is left electrically isolated during deposition. The
“floating"” condition was seen previously to optimize epitaxial Ag film quality in our PIB
deposition system."? The floating substrate potential represents a unique situation. Due to the
600-1,000 V positive bias on the crucible present for electron bombardment heating, ions are
definitely present in the beam and are repelled to all areas of the chamber at a lower potential,
including the substrate. However, because the substrate rapidly charges up due to ion impact,
the ions enter into the film growth mainly in the initial stages. This is precisely the stage at




which they would be most helpful in facilitating epitaxial growth because of their ability to
provide additional energy to the growth front and sputter away light impurities on the substrate

surface.® "

After growth, the samples were characterized using a Scintag X-ray diffraction system
2000. Two theta scans determined the grains present in the film, while a pole figure analysis
determined the azimuthal orientation of these grains relative to the substrate. In the pole figure
analysis"’, a two theta angle is set for the plane of interest, then the sample is tilted
incrementally from 0° to 80°. At each increment the sample is rotated 360° azimuthally (see
Figure 1). The result is a stereogram that reveals the poles (or normals) from each plane in the
family. If the stereogram contains rings of intensity, the planes are randomly oriented in the
film, whereas spots (or poles) of intensity reveal a preferred orientation in the film and give their
exact azimuthal orientation. Comparing the stereograms of the substrate and film determines the
exact orientation of the film relative to the substrate.

OBSERVATIONS

The epitaxy observed in all cases was Ag(110)/GaAs(100). However, the epitaxial quality
varies with the cleaning technique employed. The H,PO,/HCI sequential etch has the smallest
Ag(111)/Ag(110) two theta intensity ratio, followed by the H,SO,/HCI etch, and finally the
NH,OH and HF etches. Thus, the sample cleaned with the H,PO,/HCI sequential etch has the
largest portion of Ag(110) grains, and the HF sample the smallest. These results are summarized
in Table 2 and Figure 2. The stereograms of Figure 3 show the Ag(111) poles present in the
film. Only the Ag(111) poles were examined because reflections from Ag(200) and GaAs(220)
occur at nearly the same two theta angle. The same is true for the Ag(220) and GaAs(400)
reflections. When probing the Ag(100) and Ag(110) poles, only the more powerful substrate
reflections occur in the stereograms. The predominant (111) poles in the stereograms of Figure
3 occur at 35.3% the Ag(111) poles from the Ag(110) grains. In principle, one should see poles
at 35.3° with two-fold symmetry and poles at 90° with four-fold symmetry. The poles at 90° are
not observed because the -tilt angle is restricted to 80°.

In the H,PO,/HCI etched sample, the poles at 35.3° are very sharp and tight, indicating
that the Ag(110) grains have little tilt grain-to-grain and are all similarly azimuthally oriented.
The Ag(111) poles of the H,SO/HCI etched sample are broader, indicating a less exact
orientation of the Ag(110) grains. The NH,OH etched sample is poorer still. In the stereogram
of the HF etched sample, there are no Ag(111) poles at 35.3°, because little to no Ag(110) grains
are present in the film. Instead, a large central (111) pole is present, indicating that the primary
grains present are Ag(111), as is clearly seen in the two theta scan of the HF etched sample in
Figure 2. The uniform intensity in other areas of the stereogram shows that these (111) planes
are stacked randomly and have no preferred azimuthal orientation.

Another more simple view is presented in Figure 4. These "chi" scans are obtained by
fixing the tilt angle and rotating the sample 360° azimuthally. For Ag(110) on GaAs(100), the
two theta angle was first set to the (111) poles of Ag; the sample normal was then tilted by 35.3°



to the diffractometer plane, which corresponds to the angle between the (111) and (110) planes
in a cubic crystal. The azimuthal scan was then performed by rotating the sample 360°. For the
substrate, the two theta angle was set to the GaAs(111) poles and the tilt-angle to 54.7°, which
corresponds to the angle between the (100) and (111) planes of the cubic structure, then an
azimuthal scan was similarly performed. The GaAs wafer reflects four (111) peaks under
rotation through 360°, since there are four equivalent (111) poles in the (100) projection.
Because the two peaks from the Ag(111) poles align with two of the (111) poles of the
GaAs(100) substrate, the azimuthal character of the epitaxy is revealed.

High-quality epitaxial Ag(110) films on GaAs(100) surfaces can be obtained with an HF
dip."? This work was previously reported in Reference 12. The essentially non-epitaxial film
obtained here had the same HF dip, but was subsequently rinsed in DI water. It is known that
GaAs(100) etched in HF and blow-dried in N, yields an oxide thickness of only about 12
angstroms.!) Presumably the DI water rinse increases the oxide layer thickness, although this
is reported not to occur.”’ Controlling oxide thickness is important because in metallizing GaAs
for ohmic contact formation and for nearly ideal Schottky diode behavior, the residual dielectric
layer thickness must be reduced to a minimum. This suggests that, of the four techniques
examined here, the H,PO,/HCI sequential etch applied to GaAs(100) provides the most favorable
surface condition for the epitaxial growth of Ag. Lu et al.”? conducted XPS studies of the
GaAs(100) surface after the HP,O,/HCI and H,SO,/HCI sequential etches and found that the
former left a more As-rich surface than the latter. In addition, it was noted that elemental As
increased in concentration as the surface oxides decreased. A similar study by Olivier et al.””
concluded that an NH,OH etch left a more As-rich surface than an HF etch. Our own XPS
studies of the substrates immediately after etching agree with the above and show that the HF
etched sample has more surface As,O, than the H,PO,/HCl etched sample. These results suggest
that a wet etch can improve epitaxial quality in the Ag(110)/GaAs(100) system by leaving more
elemental As on the surface. The more As-rich surfaces have less oxides present,”” which may
facilitate epitaxial growth.

CONCLUSION

In conclusion, it was found that thin Ag films deposited on GaAs etched with an
H,PO,/HCI sequential etch provided the best epitaxial quality, followed by H,SO,/HCI, NH,OH,
and finally HF. A correlation was found between the epitaxial quality and probable elemental
As concentration on the surface. These results suggest that the surface condition of GaAs(100)
varies markedly with the cleaning technique employed. Thus, selecting the appropriate etching
scheme (and corresponding surface condition) can favorably affect epitaxial formation condition,
by controlling the orientation of the grown overlayer.
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TABLE 1. Cleaning techniques employed. Each column represents
the sequence of a particular cleaning procedure.

I II m IV
Acetone, methanol, | Acetone, methanol, Acetone, methanol, Acetone, methanol,
DI H,0 DI H,0 DI H,0 DI H,0
H,PO,:H,0,:H,0 H,SO,:H,0,:H,0 NH,OH:H,0, HF:H,0
1:10:10 1:8:80 1:700 20:1
HCL:H,0 HCL:H,0
1:1 1:1
DI H,0 DI H,0 DI H,0 DI H,0
N, blow N, blow N, blow N, blow
TABLE 2. X-ray peak intensity ratios.
Ag(111)/Ag(110)
Sample Two-Theta Intensity
Ratio

I 0.082

1I 0.32

III 14

v 35




Sample Normal

Detector " _ Source

o> X

Figure 1 Specimen geometry relative to the =x-ray source and
detector, showing angles 26, %, and azimuthal angle ¢.
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FIGURE 2. 26 scans representing the four different wet etches of
GaAs(100). All four Ag films had identical deposition conditions.
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